
qjob

Marco Mariotti

Oct 18, 2022

CONTENTS:

1 Installation 3

2 Tutorial of qjob 5
2.1 Introduction to computing clusters and queueing systems . 5
2.2 Monitor job status and cluster usage . 7
2.3 Aim and usage of qjob . 7
2.4 Job specifications and other options . 8
2.5 Default qjob options . 9
2.6 Configuration shortcuts . 9
2.7 Direct mode vs template mode . 10
2.8 Parallel vs sequential execution . 11

3 Troubleshooting 13

4 Bug reports and feature requests 15

i

ii

qjob

Qjob simplifies the everyday tasks of users of a computing cluster. It allows to conveniently turn a set of commands
into jobs which are submitted for execution to a queue. Two queueing systems are currently supported by qjob:

• The Sun Oracle Engine (SGE, also known as Oracle Grid Engine)

• The Slurm Workload Manager (Slurm)

To install qjob, check the Installation page.

Next, follow the Tutorial of qjob to familiarize yourself with its usage.

For any problem, check the Troubleshooting page.

CONTENTS: 1

qjob

2 CONTENTS:

CHAPTER

ONE

INSTALLATION

We recommend to use the conda package manager to install qjob (check this page to install conda). Run this in a
terminal to install qjob in your conda environment:

conda install -c mmariotti qjob

Now, before you start using qjob, run this command:

qjob -setup

This will create a qjob configuration file in your home: ~/.qjob.

This file contains all qjob default options for your user. Open the file in any text editor, and check (and modify if
necessary) at least these items:

• sys: your queueing system. Use sge if it is Sun Oracle Engine / Oracle Grid Engine, or slurm if it is the Slurm
Workload Manager.

• q: default queue name to submit jobs to.

• m: default amount of memory in GB specified per job

• t: default time limit in hour specified per job

• p: default number of processors specified per job

• email: your email for job notifications, if your system implements them

Note that some systems may be configured not to accept some options. If so, use a value of 0 (for integer-type options)
or an empty value (for string-type options) to omit that specification.

Qjob includes many other options. Run qjob -h for a summary, and qjob -h full for a full list. At any moment,
you may come back and edit the ~/.qjob file to change your default settings.

You’re all set! Check the Tutorial of qjob to start using qjob.

3

https://docs.conda.io/en/latest/miniconda.html

qjob

4 Chapter 1. Installation

CHAPTER

TWO

TUTORIAL OF QJOB

Contents of Tutorial

• Tutorial of qjob

– Introduction to computing clusters and queueing systems

– Monitor job status and cluster usage

– Aim and usage of qjob

– Job specifications and other options

– Default qjob options

– Configuration shortcuts

– Direct mode vs template mode

– Parallel vs sequential execution

2.1 Introduction to computing clusters and queueing systems

Skip this if you’re already familiar with the topic

A cluster is a computational infrastructure consisting of a multitude of computers (called nodes) connected in a network.
A cluster may contain hundreds or thousands of nodes, widely ranging in characteristics: from small computers with
few CPUs, to powerful ones with huge amounts of memory. Typically, all computers have access to a shared file system,
meaning that they can read and write the same disk.

The main purpose is a cluster is offering users a platform to execute calculations, and its main power is parallel com-
puting. Users split their total computational workload in bits called jobs, and sends them to the cluster for execution.

Clusters come with queueing systems (also known as job scheduler, batch system, DRMS, DRM, workload automation),
which facilitate distributing jobs. Thanks to this, users don’t have to manually connect to single nodes to run calculation.
Instead, they connect and operate uniquely within a “master” node. From here, users can run dedicated commands to
send jobs to be computed (i.e., submit them).

When submitting a job, the user has to specify its resource requirements: total time of execution, memory, and number
of threads. These are upper limits which are typically strictly enforced: if a job uses more memory or run for longer
than specified, it is killed.

Besides, the user must choose a specific queue for job submission. Queues are set by the system administrator and
differ among clusters. Typically, you have different queues corresponding to different resource requirements, e.g. you

5

qjob

may have a queue dedicated to everyday jobs with short runtime and little memory, and another for big jobs requiring
long runtimes and lots of memory.

Fig. 1: Scheme of an computing cluster example with three queues.

Once jobs are submitted, the system takes care of finding a suitable node for each. If there isn’t any available at the
moment, jobs are queued (i.e., put on a waiting list) until resources free up.

Before you start using a cluster, make sure you know:

• its queue names and guidelines

• which queueing system is installed

The most popular queueing systems used are two: Sun Oracle Engine (SGE, also known as Oracle Grid Engine) and
Slurm Workload Manager (Slurm). Both are supported by qjob. They are roughly equivalent in functionalities, but use
separate commands. For job submission, SGE provides the command qsub, whereas Slurm uses sbatch. If you’re
unsure which system you have, check which of these two commands is available in your shell.

(Note: cloud computing is conceptually analogous to huge computing clusters, owned by a tech company which rents
them to users. However, cloud computing services use distinct and platform-specific queueing systems, so that qjob is
not compatible with them.)

6 Chapter 2. Tutorial of qjob

qjob

2.2 Monitor job status and cluster usage

Before you start to submit jobs to a cluster, it is important to know the essential commands to monitor its current usage,
and the status of jobs. These utilities depends on the queueing systems.

In SGE, you have:

• qstat to see the status of your jobs (empty output if there are none)

• qstat -a "*" to see jobs of all users

• qstat -g c to see a summary of the cluster usage, split by queue

In Slurm, you have:

• squeue -u $USER to see the status of your jobs

• squeue to see jobs of all users

• sview for a convenient interactive interface with cluster usage and job status

These programs implement numerous options, and queueing systems also include additional command utilities. Check
the documentation and tutorials of SGE and Slurm online for more details.

2.3 Aim and usage of qjob

Qjob comes into play when you have a bunch of commands to be computed, i.e., a “workload”, consisting of a series
of commands such as this analysis1_workload.sh file

run_analysis -i file_A -n 50 -o output_A > logs/log_file_A
run_analysis -i file_B -n 50 -o output_B > logs/log_file_B
run_analysis -i file_C -n 50 -o output_C > logs/log_file_C
run_analysis -i file_D -n 50 -o output_D > logs/log_file_D
run_analysis -i file_E -n 50 -o output_E > logs/log_file_E
run_analysis -i file_F -n 50 -o output_F > logs/log_file_F
run_analysis -i file_G -n 50 -o output_G > logs/log_file_G
run_analysis -i file_H -n 50 -o output_H > logs/log_file_H
run_analysis -i file_I -n 50 -o output_I > logs/log_file_I
run_analysis -i file_J -n 50 -o output_J > logs/log_file_J
run_analysis -i file_K -n 50 -o output_K > logs/log_file_K
run_analysis -i file_L -n 50 -o output_L > logs/log_file_L
run_analysis -i file_M -n 50 -o output_M > logs/log_file_M

The aim of qjob is to simplify the everyday tasks of splitting the workload into jobs, define job specifications,
and submit them for computation.

There are many possible ways to split the workload into jobs. The example file above has 13 lines. We may decide to
submit them as a single job: this means they’ll all be computed sequentially on the same computer. Or we may submit
them as 13 jobs of one line each. Or anything in between. Depending on the workload, on the cluster features, and on
its usage status, you may want to go one way or another.

Let’s say that we want to split in three jobs, corresponding to option -nj 3 (-nj stands for number of jobs). Then, you
execute:

qjob -i analysis1_workload.sh -nj 3

After running qjob, you should see it created a jbs folder called analysis1_workload.sh.jbs/, with three files:

2.2. Monitor job status and cluster usage 7

qjob

analysis1_workload.sh.1 analysis1_workload.sh.2 analysis1_workload.sh.3

The command lines in analysis1_workload.sh have been partitioned to three job files. But also, these files con-
tain essential job specs required at time of submission. For example let’s inspect analysis1_workload.sh.jbs/
analysis1_workload.sh.1:

#!/bin/bash
#$ -S /bin/bash
#$ -cwd
#$ -M marco.mariotti@ub.edu
#$ -q my_queue_1
#$ -l h_rt=6:0:00
#$ -m a
#$ -V
#$ -N analysis1_workload.sh.1
#$ -l virtual_free=7G
#$ -e /home/mmariotti/my_analysis/analysis1_workload.sh.jbs/analysis1_workload.sh.1.ERR
#$ -o /home/mmariotti/my_analysis/analysis1_workload.sh.jbs/analysis1_workload.sh.1.LOG
run_analysis -i file_A -n 50 -o output_A > logs/log_file_A
run_analysis -i file_B -n 50 -o output_B > logs/log_file_B
run_analysis -i file_C -n 50 -o output_C > logs/log_file_C
run_analysis -i file_D -n 50 -o output_D > logs/log_file_D
run_analysis -i file_E -n 50 -o output_E > logs/log_file_E

Note, this file was built on a SGE system. The corresponding file for Slurm would be similar.

Besides the 5 command lines at the bottom, the file contains parameters (queue name, time limit etc) which will be
read by the job submission utility (qsub for SGE, sbatch for Slurm). In this case, all parameters were defined by the
user default settings of qjob.

Note that the jobs were not submitted just yet. To do this, you would have to re-run the same qjob command as before,
adding option -Q:

qjob -i analysis1_workload.sh -nj 3 -Q

If the jbs folder was already created by a previous run (like in our case here), the user will be prompted for overwrite
confirmation. Then, job files will be created like before, then submitted.

Warning: Before submitting lots of jobs, it is a good practice to always inspect and test your commands!

2.4 Job specifications and other options

To specify any non-default parameters, use qjob command line options. Job specifications are particularly important.
You typically want to specify:

• option -q = queue name

• option -m = memory requested in GB

• option -t = time limit in hours

• option -p = number of processors requested

8 Chapter 2. Tutorial of qjob

qjob

Another few commonly used options are presented hereafter:

Both the output folder and the job name are normally derived from the input file name, but they may be specified with
options -o and -n, respectively. The job name is derived from output folder when not specified explicitly.

By default, qjob redirects the standard output and error of each job (i.e., of all commands within the job which aren’t
redirected already) to .LOG and .ERR files located inside the jbs folder. Two options can alter this. Option -joe joins
output and error, so every job writes to a single file; and option -sl joins the output of all jobs of the workload.

In the most typical use of qjob, you specify the desired number of jobs with -nj, and the program will split the input
workload into groups of lines accordingly. However, you can instead decide how many command lines you want per
job, using option -nl.

Qjob offers plenty of other options. To see the complete list, run:

qjob -h full

2.5 Default qjob options

The configuration file in your home folder ~/.qjob contains the default options for your user. You can open this file
and modify it with any text editor. Modifications will take effect in the next qjob run. As explained in Installation, this
file is created at your first use of qjob, when you run qjob -setup.

2.6 Configuration shortcuts

As you start using qjob daily, you may find yourself employing the same combinations of options over and over. For
example, you may use a specific short time limit and a narrow memory requirement when submitting to a specific ‘fast’
queue, and use other more sizable parameters when submitting to a different ‘powerful’ queue. Qjob allows to set up
shortcuts for any combinations of parameters, so that you can activate a (potentially complex) qjob configuration using
a concise option. Shortcuts are set up with -xset and activated with -x.

For example, let’s edit the xset setting in the ~/.qjob file, so that it reads:

xset = fast : ' -q queue1 -m 5 -t 2 ' long : ' -q queue2 -m 20 -t 12 '

In this example, we set up two keywords, fast and long, which set the same parameters (queue name, memory
requirement, time limit). Thanks to this, we can now run, for example:

qjob -i analysis1_workload.sh -x fast

And this will be equivalent to:

qjob -i analysis1_workload.sh -q queue1 -m 5 -t 2

Configuration shortcuts can be used to manipulate any number of options, of any kind.

2.5. Default qjob options 9

qjob

2.7 Direct mode vs template mode

Qjob has two main modalities. We have seen the first one above, called direct mode. The user directly provides a file
with the commands that will be executed in the nodes with option -i:

qjob -i analysis1_workload.sh

Alternatively, the user can choose the template mode:

• a template command is provided with -c. This text includes placeholders marking the parts where command
lines must differ, e.g. different input files are processed.

• a tab-separated table is provided with -d, which contains the data to replace the placeholders, therefore expanding
the template to the full workload.

Let’s see an example in template mode equivalent to the direct mode example used before. Here’s the template file
analysis1_template.sh:

run_analysis -i {input} -n 50 -o {output} > logs/{log}

And the data table file analysis1_data.tsv (all delimiters are tabulators):

input output log
file_A output_A log_file_A
file_B output_B log_file_B
file_C output_C log_file_C
file_D output_D log_file_D
file_E output_E log_file_E
file_F output_F log_file_F
file_G output_G log_file_G
file_H output_H log_file_H
file_I output_I log_file_I
file_J output_J log_file_J
file_K output_K log_file_K
file_L output_L log_file_L
file_M output_M log_file_M

You may run qjob with:

qjob -c analysis1_template.sh -d analysis1_data.tsv -nj 3

Which will produce a jbs folder with files identical to the example previously presented.

Note, howewer, that in template mode the output folder name (and job name) is derived from the template provided,
which may not necessarily uniquely identify the workload. Thus, in template mode, it is recommended to explicitly
provide an output folder with option -o.

10 Chapter 2. Tutorial of qjob

qjob

2.8 Parallel vs sequential execution

Jobs are distributed to different nodes, and run (at least potentially) in parallel. What if your calculations have some
sequential dependencies, e.g. a first part generating the data for a second part? In the following example, the second
line must be executed only after the first one has finished; same for the fourth after the third.

run_part1 -i inputA -o midfileA
run_part2 -i midfileA -o outputA
run_part1 -i inputB -o midfileB
run_part2 -i midfileB -o outputB

In direct mode, it is assumed that each line of the input workload can be executed in parallel to others. So, if you
use the workload shown above and you’re not careful about how you split it into jobs, you may end up messing up the
execution order.

There are various possibilities for encoding sequential execution in qjob. The recommended one is to modify your
input workload to avoid violating the assumption above. Input commands may be arbitrarily complex, so you may
chain multiple program execution in each line through standard command separators. Therefore, the simplest solution
is to use semicolons “;” to chain into the same line those commands that must be executed sequentially:

run_part1 -i inputA -o midfileA; run_part2 -i midfileA -o outputA
run_part1 -i inputB -o midfileB; run_part2 -i midfileB -o outputB

There is one variant which is a bit more robust to errors. When using semicolons “;”, the second part is run even if
the first part has crashed. To prevent this, you can use the double ampersand “&&”. This command separator indicates
that the next command will be run only if the previous one had a non-error exit-status (the value 0). Naturally, this is
feasible only when the programs employed correctly set their exit status (not always the case!).

run_part1 -i inputA -o midfileA && run_part2 -i midfileA -o outputA
run_part1 -i inputB -o midfileB && run_part2 -i midfileB -o outputB

This strategy (with ; or &&) works both in direct and template mode. In template mode, however, you may actually
leave commands as separate lines, and they will still be consistently executed sequentially. This is because a template
command is never broken into smaller jobs: each job will contain one or more template instance, but not fractions.
In other words, in template mode, each template is treated like single line are treated in direct mode. So, these two
templates are functionally equivalent:

run_part1 -i {input} -o {mid}; run_part2 -i {mid} -o {out}

run_part1 -i {input} -o {mid}
run_part2 -i {mid} -o {out}

If your calculations require more complex dependencies (e.g. several split-apply-combine steps are chained), then you
must adopt a more powerful workload manager than qjob. We recommend Nextflow.

2.8. Parallel vs sequential execution 11

https://www.nextflow.io/

qjob

12 Chapter 2. Tutorial of qjob

CHAPTER

THREE

TROUBLESHOOTING

Queueing systems have many layers of settings. The configuration of your cluster may require unusual parameters, so
that qjob may not work at your first attempt.

The most common problem is that qjob can create job files, but at the time of submission (with option -Q active), it
crashes: the job submission utility (qsub or sbatch depending on the queueing system) did not accept some of the
arguments. Check the error message printed to screen, as it will reveal the culprit.

If there is any option which was not accepted by your system, you can remove them by setting them to a value of 0 or
empty string (depending on their type) on your command line or your ~/.qjob file.

On the other hand, some parameters may be missing but required by the submission utility. If this is case, inspect the
full list of options by running qjob -h full: most likely, you will find a qjob option suited to fix the problem. If you
can’t find any that will add the right text, you can always resort to option -so (submission options) to add any arbitrary
text when calling the submission utility.

13

qjob

14 Chapter 3. Troubleshooting

CHAPTER

FOUR

BUG REPORTS AND FEATURE REQUESTS

If you have a problem that you can’t fix after following the steps above, you may file an issue at its github page. You
can also use the same system to file feature requests.

15

https://github.com/marco-mariotti/qjob/issues

	Installation
	Tutorial of qjob
	Introduction to computing clusters and queueing systems
	Monitor job status and cluster usage
	Aim and usage of qjob
	Job specifications and other options
	Default qjob options
	Configuration shortcuts
	Direct mode vs template mode
	Parallel vs sequential execution

	Troubleshooting
	Bug reports and feature requests

